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Abstract

This paper provides an alternative proof of Kripke and meta-logical completeness of
intuitionistic modal logic. Although the notion of Kripke and meta-logical completeness
is located in mathematical logic, this study reduces it to fullness of the standard translation
in the theory of λ-calculus via Curry–Howard isomorphism. Our proof saves cost for
manufacturing a proof by willingly using some well-known results in both mathematical
logic and the theory of λ-calculus. In addition, our proof of meta-logical completeness
is purely syntactical. Since meta-logical completeness refers to syntax of intuitionistic
modal logic and intuitionistic predicate logic, our proof is considered to be more natural
and sophisticated than any other proof touring semantics of them.

Keywords. Modal logic, λ-calculus, Curry–Howard isomorphism, the standard translation,
Kripke completeness, meta-logical completeness, fullness.

1 Introduction
In mathematical logic, there exists a trend to obtain deeper understanding of modalities by
replacing classical logic as basis by intuitionistic logic, e.g., [14]. On the other hand, in com-
puter science simply typed λ-calculus (considered to be a common core of functional program-
ming languages) has been studied well. Although intuitionistic logic is seemingly-independent
from simply typed λ-calculus, it is indeed well-known that these have close connection called
Curry–Howard isomorphism [9].

In this paper, we contribute to studies on modalities by using accumulated knowledge in
the theory of typed λ-calculus. To be concrete, we prove Kripke and meta-logical complete-
ness of intuitionistic modal logic by fullness of the standard translation. While the notion
of Kripke and meta-logical completeness is located in mathematical logic, that of fullness is
located in the theory of λ-calculus. That is, this work means that we reduce Kripke and meta-
logical completeness in mathematical logic to fullness of the standard translation in the theory
of λ-calculus via Curry–Howard isomorphism.

One may think that Kripke completeness can be directly proven by a standard method us-
ing maximal consistent sets (see Section 2). It is true, but this study provides an alternative
solution. We, mathematical logicians, have already known a milestone theorem by Kripke that
intuitionistic predicate logic is complete to possible world semantics (see e.g., [13]). In addi-
tion, Kripke completeness refers to a relation between intuitionistic modal logic and possible
world semantics (formally, see Theorems 2.4 and 2.6). Therefore, it is natural and costless that
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we try to obtain Kripke completeness by referring to a relation between intuitionistic modal
logic and intuitionistic predicate logic. In this paper, we adopt the standard translation [6] as
such a relation, and indirectly show Kripke completeness by proving fullness of the standard
translation.

Meta-logical completeness refers to a relation of provability between intuitionistic modal
logic and intuitionistic predicate logic (formally, see Theorem 4.3). That is, meta-logical
completeness is a purely syntactical statement. However, for example, Simpson proves meta-
logical completeness via considering possible world semantics [12]. In contrast, this paper
provides a purely syntactical proof method for meta-logical completeness. In this sense, our
proof is considered to be more natural and sophisticated.

Our proof also raises an answer about interpretation of the modality of necessity � in pos-
sible world semantics for intuitionistic modal logic. In possible world semantics for classical
modal logic, w � � A is usually interpreted as w′ � A for any w′ ∈ W such that w R w′ where
R is a reachability relation for the modality �. In contrast, we do not have any standard in-
terpretation of the modality of necessity � in intuitionistic modal logic because intuitionistic
modal logic has another reachability relation ≤ of implication ⊃ in possible world semantics.
In possible world semantics with mixture of ≤ and R, how should the reachability relations
≤ and R are affected with each other? This is not obvious at all. Wijesekera gave an inter-
pretation of the modality � and showed Kripke completeness of intuitionistic modal predicate
logic. Alechina et al. also studied this about Constructive S4, stronger in provability, and gave
an answer in [1]. In this paper, we give an interpretation of the modality � in intuitionistic
modal logic IK, weaker in provability. The interpretation is automatically derived from our
proof that willingly reuses completeness of intuitionistic predicate logic, and coincides with
Wijesekera and Alechina et al’s interpretation. Therefore, our work gives validity to Wije-
sekera and Alechina et al’s interpretation of the modality � by existence of a natural proof of
Kripke completeness using completeness of intuitionistic predicate logic.

Finally, this study contributes to implementation of modal logic in dependent type pro-
gramming languages (e.g., Agda1, Coq2, and Epigram3) because the standard translation is
regarded as an implementation of intuitionistic modal logic in intuitionistic first-order predi-
cate logic. Fullness of the standard translation can be considered to mean that it provides no
junk when modal logic is implemented on such programming languages.

2 Intuitionistic Modal Logic
We define a set of modal formulas in the following grammar:

A, BF p | A ⊃ A | � A

where p ranges over the set of propositional variables Var.
A triple (W,≤,R) is said to be a frame if W is a non-empty set, ≤ is a partial order on W,

and R is a binary relation on W. Elements of W are said to be worlds. We write w ≤ w′ and
w R w′ as (w, w′) ∈ ≤ and (w, w′) ∈ R, respectively. When P(W) denotes the set of subsets
of M, a function V : Var → P(W) is said to be a valuation if w ∈ V(p) and w ≤ w′ imply
w′ ∈ V(p) for any w, w′ ∈ W and p ∈ Var. Such quadruple (W,≤,R,V) is said to be a model.
We define that a formula A is satisfied at a world w ∈ W by a model (W,≤,R,V) (written as

1http://wiki.portal.chalmers.se/agda/
2http://coq.inria.fr/
3http://www.e-pig.org/
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W,≤,R,V, w � A) if

W,≤,R,V, w � p ⇐⇒ w ∈ V(p) ,
W,≤,R,V, w � A ⊃ B ⇐⇒ for any w′ ∈ W such that w ≤ w′

W,≤,R,V, w′ � A implies W,≤,R,V, w′ � B ,
W,≤,R,V, w � � A ⇐⇒ for any w′, w′′ ∈ W such that w ≤ w′ and w′ R w′′

W,≤,R,V, w′′ � A .

Furthermore, we often write w � A when (W,≤,R,V) is obvious from the context. A is
called true in a model if A is satisfied at any w ∈ W in the model.

Proposition 2.1 (Monotonicity). For any formula A, w � A and w ≤ w′ imply w′ � A.

Proof. By induction on A. �

When a set Γ of formulas is given, we define w � Γ as w � A for any A ∈ Γ. When n ≥ 1 is
given, Γ1 | · · · | Γn ` A is said to be a judgment (the left side of ` called a context). We define
w1 � Γ1 | · · · | Γn ` A as wi ≤ w

′
i (1 ≤ i ≤ n), w′i−1 R wi (1 < i ≤ n), and wi � Γi (1 ≤ i ≤ n)

imply wn � A. We call that Γ1 | · · · | Γn ` A is called true in a model if w � Γ1 | · · · | Γn ` A for
any w ∈ W in the model.

Proposition 2.2. For any n ≥ 1, A is true in every model if and only if

n︷    ︸︸    ︷
∅ | · · · | ∅ ` A is true in

every model. In particular, A is true in every model if and only if ∅ ` A is true in every model.

Proof. The only-if part is obvious. We show the if-part. Assume W,≤,R,V, wn 2 A. Then,
W ∪ {wi | 1 ≤ i ≤ n− 1 },≤,R∪ { (wi, wi+1) | 1 ≤ i ≤ n− 1 },V, wn 2 A holds where w1, . . . , wn−1
is fresh. It means

W ∪ {wi | 1 ≤ i ≤ n − 1 },≤,R ∪ { (wi, wi+1) | 1 ≤ i ≤ n − 1 },V, w1 2 ∅ | · · · | ∅︸    ︷︷    ︸
n

` A �

Intuitionistic modal logic can be naı̈vely conjectured to be sound and complete to the class
of frames with reachability relations of intuitionistic implication and modality of necessity.
Indeed, Wijesekera defined intuitionistic modal logic like that in sequent calculus style and
showed Kripke completeness [14]. In this paper, we adopt the so-called Fitch-style natural
deduction (see a detailed comparison to Gentzen-style natural deduction by Bellin et al. [4]),
in particular Martini and Masini’s natural deduction (based on Prawitz’s idea [11] for defining
modal logic) since natural deduction is suitable for being translated into a λ-calculus as de-
scribed in Section 3. Although we change Martini and Masini’s notation slightly, there exists
no essential difference.

Intuitionistic modal logic IK is as follows,
(axiom)

Γ1 | · · · | Γn, A ` A

Γ1 | · · · | Γn, A ` B
(⊃ I)

Γ1 | · · · | Γn ` A ⊃ B

Γ1 | · · · | Γn ` A ⊃ B Γ1 | · · · | Γn ` A
(⊃ E)

Γ1 | · · · | Γn ` B

Γ1 | · · · | Γn | ∅ ` A
(� I)

Γ1 | · · · | Γn ` � A

Γ1 | · · · | Γn ` � A
(� E)

Γ1 | · · · | Γn | Γn+1 ` A
.
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Proposition 2.3 (Weakening). Let Γ0, Γi, ∆i (1 ≤ i ≤ n) be sets of formulas such that Γ1 | · · · |

Γi | · · · | Γn ` A is derivable. Then,

1. Γ1, ∆1 | · · · | Γi, ∆i | · · · | Γn, ∆n ` A is derivable, and

2. Γ0 | Γ1 | · · · | Γi | · · · | Γn ` A is derivable.

Theorem 2.4 (Soundness). If Γ1 | · · · | Γn ` A is derivable, then Γ1 | · · · | Γn ` A is true in
every model.

Proof. By induction on derivation. We only show (� I) and (� E)-cases. Assume wi ≤ w
′
i (1 ≤

i ≤ n) and w′i R wi+1 (1 ≤ i ≤ n) such that wi � Γi (1 ≤ i ≤ n). Then, wn+1 � A holds by
induction hypothesis. It means wn � � A.

Next, assume wi ≤ w
′
i (1 ≤ i ≤ n) and w′i Rwi+1 (1 ≤ i ≤ n) such that wi � Γi (1 ≤ i ≤ n+1).

By induction hypothesis, wn � � A holds. That is, wn+1 � A holds. �

Martini and Masini refer to Kripke completeness without any proof for it in [10]. Here,
we give a proof for it in a standard manner.

Let Γ1, Γ2, and ∆2 be sets of formulas. A pair (Γ2, ∆2) is Γ1-consistent if Π1 | Π2 ` A
is not derivable for any Π1 ⊆ Γ1, Π2 ⊆ Γ2, and any A ∈ ∆2. A pair (Γ2, ∆2) is maximally
Γ1-consistent if it is Γ1-consistent and any formula A belongs to Γ2 or ∆2.

Lemma 2.5. If (Γ2, ∆2) is Γ1-consistent, then there exists a maximal Γ1-consistent (Γ2
∗, ∆2

∗)
such that Γ2 ⊆ Γ2

∗ and ∆2 ⊆ ∆2
∗.

Proof. Let B1, . . . be an enumeration of all formulas. We define a sequence of pairs (Γm
2 , ∆

m
2 ) (m ≥

1) as follows,

(Γ1
2 , ∆

1
2) = (Γ2, ∆2)

(Γm+1
2 , ∆m+1

2 ) =

(Γm
2 , ∆

m
2 ∪ {Bm}) if (Γm

2 , ∆
m
2 ∪ {Bm}) is Γ1-consistent

(Γm
2 ∪ {Bm}, ∆

m
2 ) otherwise

If (Γm
2 , ∆

m
2 ) is Γ1-consistent, so is (Γm+1

2 , ∆m+1
2 ). Otherwise, there exist Π1 ⊆ Γ1, Π2 ⊆ Γ

m
2 ,

and A ∈ ∆m
2 such that Π1 | Π2 ` Bm and Π1 | Π2, Bm ` A are derivable. Then, Π1 | Π2 ` A

is derivable by (⊃ I) and (⊃ E)-rules. This contradicts Γ1-consistency of (Γm
2 , ∆

m
2 ). Thus,

(Γm
2 , ∆

m
2 ) is Γ1-consistent for any m ≥ 1, and we obtain a maximal Γ1-consistent pair (

⋃
{Γm

2 |

m ≥ 1 },
⋃
{∆m

2 | m ≥ 1 }). �

Theorem 2.6 (Completeness). If A is true in every model, then ∅ ` A is derivable.

Proof. Assume ∅ ` A is not derivable. By Lemma 2.5, there exists at least a maximal ∅-
consistent (Γ, ∆) such that A ∈ ∆. We define a model (W,≤,R,V) where

• W is the set of maximal ∅-consistent pairs,

• ≤ = { ((Γ1, ∆1), (Γ2, ∆2)) ∈ W ×W | Γ1 ⊆ Γ2 },

• R = { ((Γ1, ∆1), (Γ2, ∆2)) ∈ W ×W | (Γ2, ∆2) is Γ1-consistent },

• V(p) = { (Γ1, ∆1) ∈ W | p ∈ Γ1 }.
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Note that (W,≤,R,V) is surely a model since ≤ is a partial order and V is a valuation.
We show that B ∈ Γ1 if and only if (Γ1, ∆1) � B for any B, Γ1, and ∆1. By induction on B.
The case that B is a propositional variable is obvious. Next, let us the case that B is C ⊃ D.

Assume C ⊃ D ∈ Γ1, (Γ1, ∆1) ≤ (Γ2, ∆2) (i.e., Γ1 ⊆ Γ2), and (Γ2, ∆2) � C. By induction
hypothesis, C ∈ Γ2 holds. Then, D ∈ Γ2 holds by Γ1 ⊆ Γ2. By induction hypothesis,
(Γ2, ∆2) � D holds. This means (Γ1, ∆1) � C ⊃ D. Conversely, suppose C ⊃ D < Γ1, i.e.,
C ⊃ D ∈ ∆1 by the maximality of (Γ1, ∆1). Then, ({C}, {D}) is ∅-consistent. Otherwise,
∅ | C ` D is derivable, and so is ∅ | ∅ ` C ⊃ D. This contradicts the ∅-consistency of (Γ1, ∆1).
By Lemma 2.5, there exists a maximal ∅-consistent (Γ2, ∆2) such that Γ1 ⊆ Γ2, C ∈ Γ2, and
D ∈ ∆2. By induction hypothesis, (Γ2, ∆2) � C and (Γ2, ∆2) 2 D hold. By (Γ1, ∆1) ≤ (Γ2, ∆2),
this means (Γ1, ∆1) 2 C ⊃ D.

Finally, we show the case that B is �C. Assume �C ∈ Γ1, (Γ1, ∆1) R (Γ2, ∆2). Then,
C ∈ Γ2 holds. Otherwise, C ∈ ∆2 holds by the maximality of (Γ2, ∆2), and it contradicts the Γ1-
consistency of (Γ2, ∆2) since �C | ∅ ` C is derivable by (axiom) and (� E)-rules. By induction
hypothesis, (Γ2, ∆2) � C holds. This means (Γ1, ∆1) � �C. Conversely, suppose �C < Γ1, i.e.,
�C ∈ ∆1 by the maximality of (Γ1, ∆1). Then, (∅, {C}) is Γ1-consistent. Otherwise,Π | ∅ ` C is
derivable for some set Π ⊆ Γ1, and so is ∅ | Π ` �C by (� I)-rule and Proposition 2.3.2. This
contradicts the ∅-consistency of (Γ1, ∆1). By Lemma 2.5, there exists a maximal Γ1-consistent
(Γ2, ∆2) such that C ∈ ∆2. By induction hypothesis, (Γ2, ∆2) 2 C holds. By (Γ1, ∆1) R (Γ2, ∆2),
this means (Γ1, ∆1) 2 �C.

Now A ∈ ∆, that is, A < Γ holds by the maximality of (Γ, ∆). Therefore, we obtain
(Γ, ∆) 2 A. �

3 The λK and λP-Calculi
We introduce another method for proving Kripke completeness using fullness of translations
in the theory of λ-calculus.

First, we translate IK into a λ-calculus in order to deal with IK in the theory of λ-calculus.
Via an extended Curry–Howard isomorphism, the following λ-calculus (called λK in [10])
corresponds to intuitionistic modal logic IK.

Γ1 | · · · | Γn, x : A ` x : A

Γ1 | · · · | Γn, x : A ` M : B
Γ1 | · · · | Γn ` λx.M : A ⊃ B

Γ1 | · · · | Γn ` M : A ⊃ B Γ1 | · · · | Γn ` N : A
Γ1 | · · · | Γn ` MN : B

Γ1 | · · · | Γn | ∅ ` M : A
Γ1 | · · · | Γn ` gen(M) : � A

Γ1 | · · · | Γn ` M : � A
Γ1 | · · · | Γn | Γn+1 ` ungen(M) : A

.

The equational relation = of λK is the smallest congruence relation containing

(λx.M)N = [N/x]M

ungen(gen(M)) = M .
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We use various notions of ordinary λ-calculi, e.g., binding, free variable, bound variable,
α-conversion, and substitution. The notation is also similar to that in ordinary λ-calculi. In
detail, see Barendregt’s encyclopedic book [2]. In the following, α-convertible λ-terms are
identified syntactically.

Next, we recall Barendregt’s λP (equivalent to Harper et al.’s LF [8]) corresponding to an
intuitionistic first-order predicate logic (called IP). In this paper, λP’s signature is

{ P : W ⊃ ∗ | P is a unary predicate symbol } ∪ {R : W ⊃ W ⊃ ∗}

where A ⊃ B is an abbreviation of ΠxA.B (x < fv B). Variables are indexed by integers. We
write xA

i as the i-th variable of the type A. Indices and types often are often omitted when they
are obvious from the contexts. We use a, b as worlds and u, v as variables of the type Rab, for
readability. The kinds, types, and terms of λP-calculus is as follows,

K, LF ∗ | ΠxA.K

A, B,C F x | W | P | R | λxA.A | ΠxA.A | AM

M,N F x | λxA.M | MM .

The judgments of λP-calculus is as follows,

` ∗ ` W : ∗

` P : W ⊃ ∗ ` R : W ⊃ W ⊃ ∗

Γ ` A : ∗ Γ, x : A ` K
Γ ` ΠxA.K

Γ ` A : ∗ Γ, x : A ` B : K
Γ ` ΠxA.B : K

Γ ` K x < domΓ
Γ, x : K ` x : K

Γ ` A : K Γ ` L x < domΓ
Γ, x : L ` A : K

Γ ` A : K x < domΓ
Γ, x : A ` x : A

Γ ` M : A Γ ` B : K x < domΓ
Γ, x : B ` M : A

Γ, x : A ` B : K Γ ` ΠxA.K
Γ ` λxA.B : ΠxA.K

Γ ` A : ΠxB.K Γ ` M : B
Γ ` AM : K

Γ, x : A ` M : B Γ ` ΠxA.B
Γ ` λxA.M : ΠxA.B

Γ ` M : ΠxA.B Γ ` N : A
Γ ` MN : [N/x]B

Γ ` A : B Γ ` C : K B = C
Γ ` A : C

where the relation = is the smallest congruence relation containing (λx.A)M = [M/x]A and
(λx.M)N = [N/x]M. We omit an explanation for notation of λP and its denotation and leave
them to e.g., [3, 8] since they are out of the scope of this paper.

The reduction relation → of λP is defined as the smallest compatible relation containing
(λx.A)M → [M/x]A and (λx.M)N → [N/x]M. Here, we give the following terminologies, for
convenience. M is said to be in normal form if M 6→ N for any N. M is said to have a normal
form if M →∗ N and N is in normal form. Of course,→∗ is the reflexive and transitive closure
of →. M0 is strongly normalizable if there exists no infinite sequence M0,M1, . . . ,Mn, . . .
such that Mi → Mi+1 for any i ∈ ω. A λ-calculus is strongly normalizable if all the typable
λ-terms are strongly normalizable. M and M′ are called confluent if there exists N such that
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M →∗ N and M′ →∗ N. A λ-calculus is called confluent if any pair of typable equal λ-terms
is confluent.

Under these terminologies the following facts are well-known [3, 8].

Theorem 3.1. The λP-calculus is strongly normalizable and confluent.

Corollary 3.2 (Uniqueness). Any λP-term has a unique normal form.

4 Completeness
Let us recall the standard translation in modal logic (cf. [6]). The translation interprets the
modal operator � by the universal quantifier ∀ (i.e., Π in λP) and the reachability predicate
symbol R. The standard translation Φan is formally as follows,

Φan (p) = Pan

Φan (A ⊃ B) = Φan (A) ⊃ Φan (B)

Φan (� A) = ΠbW .ΠvRanb.Φb(A)

where we assume that propositional variables in modal logic one-to-one correspond to predi-
cate symbols in IP. Also, an is a variable which denotes a possible world.

We extend the standard translation to a function from not only λK-types but also λK-terms
as follows,

Φan (x) = x

Φan (λxA.M) = λxΦan (A).Φan (M)
Φan (MN) = Φan (M)Φan (N)

Φan (gen(M)) = λbW .λvRab.Φb(M)

Φan (ungen(M)) = Φan−1 (M)anuRan−1an
1 .

We define interpretations of contexts elementwise. Furthermore, we define those of judg-
ments as follows,

Φ(Γ1 | · · · | Γn ` M : A) =

a1 : W, . . . ,an : W,
uRa1a2

1 : Ra1a2,. . . ,u
Ran−1an
1 : Ran−1an,

Φa1 (Γ1), . . . ,Φan (Γn)
` Φan (M) : Φan (A) .

Here, under a context of Φ(Γ1 | · · · | Γn ` M : A) for some Γ1, . . . , Γn, M, and A, we can
produce a grammar containing the set of λP-terms in normal form of the type A in the image
of Φan as follows,

In F xΦan (A) | In−1aW
n uRan−1an

1 | InJn

Jn F In | λxΦan (A).Jn | λbW .λvRanb.Jn+1 .

We define a function Ψan on Jn as follows,

Ψan (x) = x

Ψan (In−1aW
n uRan−1an

1 ) = ungen(Ψan−1 (In−1))
Ψan (InJn) = Ψan (In)Ψan (Jn)

Ψan (λxΦan (A).Jn) = λxA.Ψan (Jn)

Ψan (λbW .λvRanb.Jn+1) = gen(Ψan+1 (Jn+1)) .
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Lemma 4.1. Φan ◦ Ψan is the identity function.

Proof. By induction on Jn. �

Theorem 4.2 (Fullness). If A is typable under Φ(Γ1 | · · · | Γn ` B), then there exists M such
that Γ1 | · · · | Γn ` M : B and A = Φan (M).

Proof. Let Jn be the normal form of A. By Lemma 4.1, it is sufficient to takeΨan (Jn) as M. �

Corollary 4.3 (Kripke and Meta-Logical Completeness). If ` A is not derivable in IK, then
` Φan (A) is not derivable in IP, too. Therefore, the contraposition of Theorem 2.6 derives from
completeness of IP to the possible world semantics.

5 Concluding Remark
We showed Kripke and meta-logical completeness for IK using Curry–Howard isomorphism
and fullness of the standard translation. Can we apply a similar proof to an extension, e.g., IK
with � A ⊃ A (written as IT)? Martini and Masini added the following inference rule

Γ1 | · · · | Γn ` M : � A
(T)

Γ1 | · · · | Γn ` T(M) : A

for IT [10]. According to the extension, we add a constant e : ΠaW .Raa to λP and extend the
standard translation to one such that

Φan (T(M)) = Φan (M)an(ean) .

In this case, the set In is changed to

In F · · · | InaW
n (ean) .

Then, we can show fullness of the extended standard translation by extending Ψan to

Ψan (InaW
n (ean)) = T(Ψan (In)) .

In intuitionistic modal logic, IT with � A ⊃ �� A (called IS4) is one of the most fascinat-
ing logics. Indeed, its Kripke semantics and categorical semantics are exhaustively studied by
Bierman and de Paiva [5], and constructive S4 (dealt with in [1] as described in Section 1) is a
variant of IS4. Furthermore, Davies and Pfenning clarified that staged computation was real-
ized by the modality of IS4 [7], and opened a new frontier of modalities between mathematical
logic and computer science. We can find not only their studies but also other ones about IS4
in some literatures. If our proof method were applied to IS4, we could obtain deeper under-
standings of modalities in possible world semantics, category theory, and computer science
throughout de Paiva et al. and Pfenning et al.’s studies.

However, it is not easy to apply our proof method to IS4. We explain this in the following.
Since the class of frame complete to IS4 should be transitive (and reflexive), it is sufficient to
add a constant d : ΠaW .ΠbW .ΠcWΠuRab.ΠvRbc.Rac to λP. Then, one can find more than one
proof of Rac depending to a path from the world a to the world c, i.e., a choice of the world b.
Here, our proof method seems to require either of the following two approaches:

• to extend the standard translation to the one of the large domain (considering difference
of paths between worlds), or
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• to introduce a relation to equate all the proofs of Rac independent from b.

The former approach is very hard. This makes the former approach to be out of the scope of
this paper because this paper aims to provide an easy proof method. The latter approach is also
out of the scope of this paper. In fact, the point of our proof method depends on uniqueness of
proofs (see Corollary 3.2). As we introduce an equational relation, we must give a reduction
relation whose closure coincides with the equational relation. What is harder that the reduction
relation must be normalizing and confluent. This is far off our policy that reuses the existing
results and proves Kripke and meta-logical completeness easily. It is still open whether our
proof method is applicable to IS4 and other extensions of intuitionistic modal logic.

Acknowledgments. The author thanks Yoshihiko Kakutani, Daisuke Kimura, Kazushige
Terui, and Satoru Yoshida for the encouragement.
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